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Engineering studies are constantly highlighting features of
proteins which are essential for their structure and functionality.
In the case of metalloproteins, various approaches have been utilized
to discover the crucial attributes of their active sites, ranging from
site-directed mutagenesis of ligating residues to the design of novel
metal-binding centers.1,2 Metal-binding sites in proteins are com-
monly fabricated from loop regions, and using loop-directed
mutagenesis active sites can be grafted onto a particular protein
scaffold. The cupredoxins possess a rigidâ-barrel structure, which
is an ideal scaffold for protein engineering studies, and loop-directed
mutagenesis has been used to modify the mononuclear type 1 copper
site3-5 and to introduce a dinuclear CuA center.6,7 The loop
mutagenesis studies carried out to date on cupredoxins have all
involved lengthening an active-site loop. Herein we report the results
of the first loop-contraction mutagenesis experiments on a cupre-
doxin, in which we have replaced an active-site loop of pseudo-
azurin (PAz) with the loop from amicyanin which is shorter (see
Figure 1).

The type 1 copper site of PAz fromAchromobacter cycloclastes
is shown in Figure 1. The ligands Cys78, His81, and Met86 are
connected by the C-terminal active-site loop. We have replaced
the native loop of PAz with that of amicyanin (see Figure 1).10

The PAzAmi protein produced possesses only two intervening
residues between the His and Met ligands on this loop. PAzAmi
has a cupric site structure very similar to that of PAz as judged by
UV/vis11 and EPR13 spectroscopy (see Figure 2). The spectral
properties of PAzAmi are distinct from those of amicyanin, the
protein whose loop has been introduced (see Figure 2). Therefore,
the Cu-S(Cys78) interaction, which is largely responsible for the
spectroscopic features of a type 1 copper site,14 is unaltered by the
loop contraction. This is consistent with the fact that in PAzAmi
the loop between Cys78 and His81 has not been modified.
Confirmation that the structure of the cupric site in PAzAmi is very
similar to that of PAz is gained from the paramagnetic1H NMR
spectra of the two oxidized proteins which are almost identical.15

The loop-contraction mutation lowers the reduction potential (Em)
of PAz.16 An Em of 215 mV is obtained at pH 8.0 for PAzAmi
compared to 266 mV for PAz (see Figure 3). It is interesting to

note that the loop-elongation mutations in amicyanin always result
in an increase inEm.3-5 The pH dependence of theEm has also
been affected in PAzAmi (see Figure 3). The small influence of
pH on theEm of PAz is due to the protonation of His6, a surface
residue some 14 Å from the copper site.12 The large increase in
the Em of PAzAmi17 as the pH is lowered from 8 to 5.8 indicates
that reduction of the protein is accompanied by the uptake of a
proton at the active site in this pH range. A pKa of 6.6 is obtained
from these data18 which corresponds to the pKa value determined
for His81 in reduced PAzAmi from1H NMR experiments.20 The
ligand His81 also protonates and dissociates from the cuprous ion
in PAz but with a much lower pKa value of 4.8,21 and also in a
number of other cupredoxins including plastocyanin (pKa ≈
5)19,22-24 and amicyanin (pKa ≈ 7).3,23,25 This property of cupre-
doxins may have a physiological role due to its dramatic influence
on theEm and electron-transfer (ET) capabilities of the type 1 copper
site.3,19,22-27 However, it is currently not clear which features of a
cupredoxin’s active-site architecture are most significant for
determining the pKa value of the C-terminal His ligand. It is
interesting to note that the Pro95Phe mutation inParacoccus
denitrificansamicyanin has recently been shown to result in a large
decrease in the pKa of His95.28 The increase in the pKa for His81
in PAzAmi, and the similarity of its pKa to that for the His95 ligand
in reduced amicyanin, indicates that the length of the loop between
the His and Met ligands can regulate this feature.

The influence of the loop contraction on the ET properties of
PAz has been assessed by investigating the electron self-exchange

Figure 2. UV/vis (top) and EPR (bottom) spectra of PAz (B), PAzAmi
(A), and amicyanin (Ami, C). UV/vis spectra were obtained at 25°C in 10
mM phosphate pH 8.0, and X-band EPR spectra were obtained at-196°C
in 25 mM Hepes pH 7.6 (40% glycerol).

Figure 1. Active-site structures ofA. cycloclastespseudoazurin (PAz)8

andParacoccus denitrificansamicyanin.9 The sequences of the C-terminal
active site loops are shown and indicate the loop-contraction mutation that
has been made to PAz to produce PAzAmi.
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(ESE) reactivity of PAzAmi.29 The ESE rate constant of PAzAmi
is 4.3× 102 M-1 s-1 at pH* 7.6 compared to a value of 3.7× 103

M-1 s-1 for PAz under identical conditions.12 The ESE rate constant
of PAzAmi decreases to 1.5× 102 M-1 s-1 at pH* 6.5 consistent
with protonation of the His81 ligand in the reduced protein
diminishing the protein’s ET capabilities. The PAzAmi variant is
still redox active, but its ability to transfer electrons has been
diminished by the mutation. A similar influence on ET reactivity
has been observed in loop-elongation variants of amicyanin.3-5

The properties of the PAzAmi variant are consistent with the
loop-contraction mutation not having a major effect on the structure
of the copper site. Thus, theâ-barrel scaffold of PAz is able to
accommodate a shorter C-terminal active-site loop. The decrease
in the Em of PAzAmi indicates that the mutant has an active-site
environment more suited to the cupric ion. The increased pKa value
of His81, and the diminished ET reactivity, can be attributed to
structural modifications at the cuprous site caused by the loop
contraction. This is consistent with observed changes in the1H
NMR spectrum of reduced PAzAmi as compared to that of PAz
(see Figure S4). The shortening of the His-to-Met sequence in a
cupredoxin facilitates protonation and dissociation of the C-terminal
His ligand.
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Figure 3. Dependence on pH (I ) 0.10 M, NaCl) of the reduction potential
(Em) of PAz (9) and PAzAmi ([). All of the values are referenced to the
NHE at 21°C.
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